Disney - Mickey Mouse >>> Nikmatul Maula's Blog: Pengantar Dasar Matematika

08/11/11

Pengantar Dasar Matematika

**Task 1**

4.a) 1. [(a c) ~b] → [(d→ c) → f]
        2. ~a→ b
        3. ~b                                               /
[(d→ c) → f]
        4. a (2,3 MT)
        5. a
c (4 add)
        6. (a
c) ~b (5,3 konj)
        7. (d→ c) → f (1,6 MP)

4.b) 1. e→ (f
~g)
        2. (f
g)→ h
        3. e                                                 /
h
        4. (f
~g)  (1,3 MP)
        5. f (4 simp)
        6. (f
g) (5 add)
        7. h (2,6 MP)

4.c) 1. e→ f
        2. e→ g     /
e→ (f g)
        3. (e→ f)
(e→ g)  (1,2 konj)
        4. e→ (f
g) (3 dist)

4.d) 1. (~u
v) (u v)
        2. ~x→ ~w                         /
v x
        3. (~u
u) v          (1 dist)
        4. F
v                   (3 komp)
        5. v          (4 id)
        6. v
x (5 add)

4.e) 1. e→ f
        2. g→ f                           /
(e g) → f
        3. ~f→ ~e                 (1 ekiv)
        4. ~f→ ~g                 (2 ekiv)
        5. (~f→ ~e)
(~f→ ~g) (3,4 konj)
        6. ~f→ (~e
~g) (5 dist)
        7. (e
g) → f (6 ekiv)

5.a) 1. b → n
        2. ~b → s               /
n s
        3. ~n → ~b (1 ekiv)
        4. ~n → s (3,2 sil)
        5. n
s         (4 ekiv)

     b.) 1. ( p
t) → n
           2. ( t → n) → s
           3. p                            /
s
           4. p → (t → n)  (1 eksp)
           5. t → n           (4,3 MP)
           6. s        (2,5 MP)

      d.) 1. b
k
            2. ( b
m )  → ( l h )
            3.  ~l                        /
k
            4. ( ~l
~h)  → ( ~b ~m)    (2 ekiv)
            5. ~l
~h             (3 add)
            6. ~b
~m            (4,5 MP)
            7. ~b      (6 simp)
            8. ~b → k       (1 ekiv)
            9. k           (8,9 MP)



**Task 2**

Show that :
a) A ∩ A = A
b) A ∩ B = B ∩ A
c) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C )

Answer

a) Proof :

i. Show that A ∩ A
A
Take any x
A ∩ A
Obvious x
A ∩ A
≡ x
A x A
≡ x
A (idempoten)
So, A ∩ A
A .................................(1)

ii. Show that A 
A ∩ A
Take any x
A
Obvious x
A
≡ x
A
≡ x
A x A (idempoten)
So, A
A  ∩ A .................................(2)

From (1) and (2), we conclude that A ∩ A = A


b) Proof :

i. Show that ( A ∩ B )
( B ∩ A )
Take any x
A ∩ B
Obvious x
A ∩ B
≡ x
A x B
≡ x
B x A (komutatif)
So, ( A ∩ B )
( B ∩ A )......................(1)

ii. Show that( B ∩ A )
( A ∩ B )
Take any x
B ∩ A
Obvious x
B ∩ A
≡ x
B x A
≡ x
A x B (komutatif)
So, ( B ∩ A )
( A ∩ B ) ......................(2)

From (1) and (2), we conclude that A ∩ B = B ∩ A

c) Proof :

i. Show that ( A ∩ B ) ∩ C = A ∩ ( B ∩ C )
Take any x
( A ∩ B ) ∩ C
Obvious x
( A ∩ B ) ∩ C
≡ (x
A x B) x C
≡ x
A ( x B x C ) (asosiatif)
So, [( A ∩ B ) ∩ C]
[A ∩ ( B ∩ C )]...........(1)

ii. Show that A ∩ ( B ∩ C )  = (A ∩ B ) ∩ C
Take any x
  A ∩ ( B ∩ C )
Obvious x
A ∩ ( B ∩ C )
≡ x
A ( x B x C)
≡ ( x
A   x B ) x C  (asosiatif)
So, [A ∩ ( B ∩ C )]
[( A ∩ B ) ∩ C] ...........(2)

From (1) and (2), we conclude that ( A ∩ B ) ∩ C = A ∩ ( B ∩ C )

0 comments:

Posting Komentar